Inicio > > Bases de datos > Diseño y teoría de bases de datos > Machine Learning Infrastructure and Best Practices for Software Engineers
Machine Learning Infrastructure and Best Practices for Software Engineers

Machine Learning Infrastructure and Best Practices for Software Engineers

Miroslaw Staron

62,67 €
IVA incluido
Disponible
Editorial:
Packt Publishing
Año de edición:
2024
Materia
Diseño y teoría de bases de datos
ISBN:
9781837634064
62,67 €
IVA incluido
Disponible
Añadir a favoritos

Efficiently transform your initial designs into big systems by learning the foundations of infrastructure, algorithms, and ethical considerations for modern software productsKey FeaturesLearn how to scale-up your machine learning software to a professional levelSecure the quality of your machine learning pipeline at runtimeApply your knowledge to natural languages, programming languages, and imagesBook DescriptionAlthough creating a machine learning pipeline or developing a working prototype of a software system from that pipeline is easy and straightforward nowadays, the journey toward a professional software system is still extensive. This book will help you get to grips with various best practices and recipes that will help software engineers transform prototype pipelines into complete software products.The book begins by introducing the main concepts of professional software systems that leverage machine learning at their core. As you progress, you’ll explore the differences between traditional, non-ML software, and machine learning software. The initial best practices will guide you in determining the type of software you need for your product. Subsequently, you will delve into algorithms, covering their selection, development, and testing before exploring the intricacies of the infrastructure for machine learning systems by defining best practices for identifying the right data source and ensuring its quality.Towards the end, you’ll address the most challenging aspect of large-scale machine learning systems - ethics. By exploring and defining best practices for assessing ethical risks and strategies for mitigation, you will conclude the book where it all began - large-scale machine learning software.What you will learnIdentify what the machine learning software best suits your needsWork with scalable machine learning pipelinesScale up pipelines from prototypes to fully fledged softwareChoose suitable data sources and processing methods for your productDifferentiate raw data from complex processing, noting their advantagesTrack and mitigate important ethical risks in machine learning softwareWork with testing and validation for machine learning systemsWho this book is forIf you’re a machine learning engineer, this book will help you design more robust software, and understand which scaling-up challenges you need to address and why. Software engineers will benefit from best practices that will make your products robust, reliable, and innovative. Decision makers will also find lots of useful information in this book, including guidance on what to look for in a well-designed machine learning software product.Table of ContentsMachine Learning Compared to Traditional SoftwareElements of a Machine Learning Software SystemData in Software Systems - Text, Images, Code, FeaturesData Acquisition, Data Quality and NoiseQuantifying and Improving Data PropertiesTypes of Data in ML SystemsFeature Engineering for Numerical and Image DataFeature Engineering for Natural Language DataTypes of Machine Learning Systems - Feature-Based and Raw Data Based (Deep Learning)Training and evaluation of classical ML systems and neural networksTraining and evaluation of advanced algorithms - deep learning, autoencoders, GPT-3Designing machine learning pipelines (MLOps) and their testingDesigning and implementation of large scale, robust ML software - a comprehensive exampleEthics in data acquisition and management(N.B. Please use the Look Inside option to see further chapters)

Artículos relacionados

  • Hands-On Machine Learning on Google Cloud Platform
    Alexis Perrier / Giuseppe Ciaburro / Kishore Ayyadevara
    Enhance your understanding of Computer Vision and image processing by developing real-world projects in OpenCV 3Key FeaturesGet to grips with the basics of Computer Vision and image processingThis is a step-by-step guide to developing several real-world Computer Vision projects using OpenCV 3This book takes a special focus on working with Tesseract OCR, a free, open-source libr...
    Disponible

    67,00 €

  • MLOps with Red Hat OpenShift
    Faisal Masood / Ross Brigoli
    Build and manage MLOps pipelines with this practical guide to using Red Hat OpenShift Data Science, unleashing the power of machine learning workflowsKey FeaturesGrasp MLOps and machine learning project lifecycle through concept introductionsGet hands on with provisioning and configuring Red Hat OpenShift Data ScienceExplore model training, deployment, and MLOps pipeline buildi...
    Disponible

    61,48 €

  • Data Labeling in Machine Learning with Python
    Vijaya Kumar Suda
    Take your data preparation, machine learning, and GenAI skills to the next level by learning a range of Python algorithms and tools for data labelingKey FeaturesGenerate labels for regression in scenarios with limited training dataApply generative AI and large language models (LLMs) to explore and label text dataLeverage Python libraries for image, video, and audio data analysi...
    Disponible

    83,55 €

  • Data Engineering with Scala and Spark
    David Radford / Eric Tome / Rupam Bhattacharjee
    Take your data engineering skills to the next level by learning how to utilize Scala and functional programming to create continuous and scheduled pipelines that ingest, transform, and aggregate dataKey FeaturesTransform data into a clean and trusted source of information for your organization using ScalaBuild streaming and batch-processing pipelines with step-by-step explanati...
    Disponible

    55,63 €

  • Database Design and Modeling with Google Cloud
    Abirami Sukumaran
    Build faster and efficient real-world applications on the cloud with a fitting database model that’s perfect for your needsKey FeaturesFamiliarize yourself with business and technical considerations involved in modeling the right databaseTake your data to applications, analytics, and AI with real-world examplesLearn how to code, build, and deploy end-to-end solutions with exper...
    Disponible

    48,37 €

  • Data Stewardship in Action
    Pui Shing Lee
    Take your organization’s data maturity to the next level by operationalizing data governanceKey FeaturesDevelop the mindset and skills essential for successful data stewardshipApply practical advice and industry best practices, spanning data governance, quality management, and compliance, to enhance data stewardshipFollow a step-by-step program to develop a data operating model...
    Disponible

    68,38 €

Otros libros del autor

  • Automotive Software Architectures
    Miroslaw Staron
    This book introduces the concept of software architecture as one of the cornerstones of software in modern cars. Following a historical overview of the evolution of software in modern cars and a discussion of the main challenges driving that evolution, Chapter 2 describes the main architectural styles of automotive software and their use in cars’ software. Chapter 3 details thi...
    Disponible

    80,95 €

  • Automotive Software Architectures
    Miroslaw Staron
    This book introduces the concept of software architecture as one of the cornerstones of software in modern cars. Following a historical overview of the evolution of software in modern cars and a discussion of the main challenges driving that evolution, Chapter 2 describes the main architectural styles of automotive software and their use in cars’ software. Chapter 3 details thi...
    Disponible

    110,34 €

  • Action Research in Software Engineering
    Miroslaw Staron
    This book addresses action research (AR), one of the main research methodologies used for academia-industry research collaborations. It elaborates on how to find the right research activities and how to distinguish them from non-significant ones. Further, it details how to glean lessons from the research results, no matter whether they are positive or negative. Lastly, it shows...
    Disponible

    68,48 €

  • Action Research in Software Engineering
    Miroslaw Staron
    This book addresses action research (AR), one of the main research methodologies used for academia-industry research collaborations. It elaborates on how to find the right research activities and how to distinguish them from non-significant ones. Further, it details how to glean lessons from the research results, no matter whether they are positive or negative. Lastly, it shows...
    Disponible

    104,02 €

  • Automotive Software Architectures
    Miroslaw Staron
    This book introduces the concept of software architecture as one of the cornerstones of software in modern cars. Following a historical overview of the evolution of software in modern cars and a discussion of the main challenges driving that evolution, Chapter 2 describes the main architectural styles of automotive software and their use in cars’ software. In Chapter 3, readers...
    Disponible

    68,54 €

  • Automotive Software Architectures
    Miroslaw Staron
    ...