Computational Aspects of Modular Forms and Galois Representations

Computational Aspects of Modular Forms and Galois Representations

 

129,39 €
IVA incluido
Disponible
Editorial:
Princeton University Press
Año de edición:
2011
ISBN:
9780691142029
129,39 €
IVA incluido
Disponible
Añadir a favoritos

Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan’s tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest known algorithms for computing these Fourier coefficients took exponential time, except in some special cases. The case of elliptic curves (Schoof’s algorithm) was at the birth of elliptic curve cryptography around 1985. This book gives an algorithm for computing coefficients of modular forms of level one in polynomial time. For example, Ramanujan’s tau of a prime number p can be computed in time bounded by a fixed power of the logarithm of p. Such fast computation of Fourier coefficients is itself based on the main result of the book: the computation, in polynomial time, of Galois representations over finite fields attached to modular forms by the Langlands program. Because these Galois representations typically have a nonsolvable image, this result is a major step forward from explicit class field theory, and it could be described as the start of the explicit Langlands program. The computation of the Galois representations uses their realization, following Shimura and Deligne, in the torsion subgroup of Jacobian varieties of modular curves. The main challenge is then to perform the necessary computations in time polynomial in the dimension of these highly nonlinear algebraic varieties. Exact computations involving systems of polynomial equations in many variables take exponential time. This is avoided by numerical approximations with a precision that suffices to derive exact results from them. Bounds for the required precision--in other words, bounds for the height of the rational numbers that describe the Galois representation to be computed--are obtained from Arakelov theory. Two types of approximations are treated: one using complex uniformization and another one using geometry over finite fields. The book begins with a concise and concrete introduction that makes its accessible to readers without an extensive background in arithmetic geometry. And the book includes a chapter that describes actual computations.

Artículos relacionados

  • ZETA FUNCTIONS OF REDUCTIVE GROUPS AND THEIR ZEROS
    LIN WENG
    This book provides a systematic account of several breakthroughs in the modern theory of zeta functions. It contains two different approaches to introduce and study genuine zeta functions for reductive groups (and their maximal parabolic subgroups) defined over number fields. Namely, the geometric one, built up from stability of principal lattices and an arithmetic cohomology t...
    Disponible

    241,99 €

  • The Norm Residue Theorem in Motivic Cohomology
    Charles A. Weibel / Christian Haesemeyer
    This book presents the complete proof of the Bloch-Kato conjecture and several related conjectures of Beilinson and Lichtenbaum in algebraic geometry. Brought together here for the first time, these conjectures describe the structure of étale cohomology and its relation to motivic cohomology and Chow groups.Although the proof relies on the work of several people, it is credited...
    Disponible

    114,75 €

  • Eisenstein Cohomology for GLN and the Special Values of Rankin-Selberg L-Functions
    Anantharam Raghuram / Günter Harder
    This book studies the interplay between the geometry and topology of locally symmetric spaces, and the arithmetic aspects of the special values of L-functions.The authors study the cohomology of locally symmetric spaces for GL(N) where the cohomology groups are with coefficients in a local system attached to a finite-dimensional algebraic representation of GL(N). The image of t...
    Disponible

    239,66 €

  • Eisenstein Cohomology for GLN and the Special Values of Rankin-Selberg L-Functions
    Anantharam Raghuram / Günter Harder
    This book studies the interplay between the geometry and topology of locally symmetric spaces, and the arithmetic aspects of the special values of L-functions.The authors study the cohomology of locally symmetric spaces for GL(N) where the cohomology groups are with coefficients in a local system attached to a finite-dimensional algebraic representation of GL(N). The image of t...
    Disponible

    108,21 €

  • Esercizi di geometria e algebra lineare con svolgimento
    NICOLA BELLINI
    Il presente libro trae origine dalle lezioni del corso di Geometria e vuole essere un utile strumento per la preparazione agli esami presenti in diversi corsi di laurea triennale, quali, Architettura e Ingegneria. Gli esercizi scelti, prima di tutto, suggeriscono percorsi per approfondimenti e riflessioni, personali, sulle nozioni teoriche da studiare per gli esami. Inoltre, so...
    Disponible

    79,85 €

  • Berkeley Lectures on p-adic Geometry
    Jared Weinstein / Peter Scholze
    Berkeley Lectures on p-adic Geometry presents an important breakthrough in arithmetic geometry. In 2014, leading mathematician Peter Scholze delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory of p-adic geometry. Building on his discovery of perfectoid spaces, Scholze introduced the concept of “diamonds,” which are to perfectoid ...
    Disponible

    115,00 €